Team, Visitors, External Collaborators
Overall Objectives
Research Program
Application Domains
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Section: Research Program

Main research topics

Stochastic modeling: Markov chain, Piecewise Deterministic Markov Processes (PDMP), Markov Decision Processes (MDP).

The mathematical representation of complex systems is a preliminary step to our final goal corresponding to the optimization of its performance. The team CQFD focuses on two complementary types of approaches. The first approach is based on mathematical representations built upon physical models where the dynamic of the real system is described by stochastic processes. The second one consists in studying the modeling issue in an abstract framework where the real system is considered as black-box. In this context, the outputs of the system are related to its inputs through a statistical model. Regarding stochastic processes, the team studies Piecewise Deterministic Markov Processes (PDMPs) and Markov Decision Processes (MDPs). These two classes of Markov processes form general families of controlled stochastic models suitable for the design of sequential decision-making problems. They appear in many fields such as biology, engineering, computer science, economics, operations research and provide powerful classes of processes for the modeling of complex systems. Our contribution to this topic consists in expressing real-life industrial problems into these mathematical frameworks. Regarding statistical methods, the team works on dimension reduction models. They provide a way to understand and visualize the structure of complex data sets. Furthermore, they are important tools in several different areas such as data analysis and machine learning, and appear in many applications such as biology, genetics, environment and recommendation systems. Our contribution to this topic consists in studying semiparametric modeling which combines the advantages of parametric and nonparametric models.

Estimation methods: estimation for PDMP; estimation in non- and semi- parametric regression modeling.

To the best of our knowledge, there does not exist any general theory for the problems of estimating parameters of PDMPs although there already exist a large number of tools for sub-classes of PDMPs such as point processes and marked point processes. To fill the gap between these specific models and the general class of PDMPs, new theoretical and mathematical developments will be on the agenda of the whole team. In the framework of non-parametric regression or quantile regression, we focus on kernel estimators or kernel local linear estimators for complete data or censored data. New strategies for estimating semi-parametric models via recursive estimation procedures have also received an increasing interest recently. The advantage of the recursive estimation approach is to take into account the successive arrivals of the information and to refine, step after step, the implemented estimation algorithms. These recursive methods do require restarting calculation of parameter estimation from scratch when new data are added to the base. The idea is to use only the previous estimations and the new data to refresh the estimation. The gain in time could be very interesting and there are many applications of such approaches.

Dimension reduction: dimension-reduction via SIR and related methods, dimension-reduction via multidimensional and classification methods.

Most of the dimension reduction approaches seek for lower dimensional subspaces minimizing the loss of some statistical information. This can be achieved in modeling framework or in exploratory data analysis context.

In modeling framework we focus our attention on semi-parametric models in order to conjugate the advantages of parametric and nonparametric modeling. On the one hand, the parametric part of the model allows a suitable interpretation for the user. On the other hand, the functional part of the model offers a lot of flexibility. In this project, we are especially interested in the semi-parametric regression model Y=f(X'θ)+ε, the unknown parameter θ belongs to p for a single index model, or is such that θ=[θ1,,θd] (where each θk belongs to p and dp for a multiple indices model), the noise ε is a random error with unknown distribution, and the link function f is an unknown real valued function. Another way to see this model is the following: the variables X and Y are independent given X'θ. In our semi-parametric framework, the main objectives are to estimate the parametric part θ as well as the nonparametric part which can be the link function f, the conditional distribution function of Y given X or the conditional quantile qα. In order to estimate the dimension reduction parameter θ we focus on the Sliced Inverse Regression (SIR) method which has been introduced by Li [37] and Duan and Li [35].

Methods of dimension reduction are also important tools in the field of data analysis, data mining and machine learning.They provide a way to understand and visualize the structure of complex data sets.Traditional methods among others are principal component analysis for quantitative variables or multiple component analysis for qualitative variables. New techniques have also been proposed to address these challenging tasks involving many irrelevant and redundant variables and often comparably few observation units. In this context, we focus on the problem of synthetic variables construction, whose goals include increasing the predictor performance and building more compact variables subsets. Clustering of variables is used for feature construction. The idea is to replace a group of ”similar” variables by a cluster centroid, which becomes a feature. The most popular algorithms include K-means and hierarchical clustering. For a review, see, e.g., the textbook of Duda [36].

Stochastic control: optimal stopping, impulse control, continuous control, linear programming.

The main objective is to develop approximation techniques to provide quasi-optimal feasible solutions and to derive optimality results for control problems related to MDPs and PDMPs: